

Code Cleaning
some techniques for improving existing code

A fundamental condition for large scale agile and effective software development is that
the codebase is in a healthy state and easy to work with. If you do not take care of your
codebase it will rot and your project (and company) will probably fail.

Clean code is code that looks like it is written by somebody who cares, and where
there is nothing obvious that you can do to make it better(*). This talk will discuss some
techniques and tricks for code cleaning; it might give you an idea about how to improve
existing code, how to keep your codebase healthy.

Olve Maudal
oma@pvv.org

10 minute lightening talk at Smidig 2008
October 9-10, 2008

(*) Michael Feathers' definition

Code Cleaning

(reproduced with kind permission of Thom Holwerda)

WTFs/minute

Leave the campground
cleaner than you found it.

(see CCp14)

The Boy Scout Rule

This talk is very much inspired by Uncle Bob's latest book about writing clean code, but also
by Michael Feathers book about working with dirty code.

Many examples, sentences and ideas in this talk are just ripped out from these excellent
books.

I agree with most of the stuff I present here...

Background and Disclaimer

Conditionals

if (!isInvalid(value)) {
 ...
}

if (isValid(value)) {
 ...
}

Current solution:

Negatives are harder to understand than positives.

Possible improvement:

Explanatory variables

boolean isLeapYear(int year) {
 return ((year % 4 == 0) && (year % 400 == 0)) ||
 ((year % 4 == 0) && (year % 100 != 0));
}

boolean isLeapYear(int year) {
 boolean fourth = year % 4 == 0;
 boolean hundreth = year % 100 == 0;
 boolean fourHundreth = year % 400 == 0;
 return fourth && (!hundreth || fourHundreth);
}

Current solution:

The code above does the right thing, but it is possible to improve the
readability.

Possible improvement:

Functions
public void pay() {
 for (Employee e : employees) {
 if (e.isPayday()) {
 Money pay = e.calculatePay();
 e.deliverPay(pay);
 }
 }
}

public void pay() {
 for (Employee e : employees)
 payIfNecessary(e);
}

private void payIfNecessary(Employee e) {
 if (e.isPayday())
 calculateAndDeliverPay(e);
}

private void calculateAndDeliverPay(Employee e) {
 Money pay = e.calculatePay();
 e.deliverPay(pay);
}

A function should ideally
do just one thing, and do
it well. Above is an
example of a function
that does many things. If
a function does more
than one thing, consider
splitting it.

Possible improvement:

Current solution:

Try/Catch Blocks
public void delete(Page page) {
 try {
 deletePage(page);
 registry.deleteReferences(page.name);
 configKeys.deleteKey(page.name.makeKey());
 } catch (Exception e) {
 logger.log(e.getMessage());
 }
}

public void delete(Page page) {
 try {
 deletePageAndAllReferences(page);
 } catch (Exception e) {
 logError(e);
 }
}

private void deletePageAndAllReferences(Page page) throws Exception {
 deletePage(page);
 registry.deleteReferences(page.name);
 configKeys.deleteKey(page.name.makeKey());
}

private void logError(Exception e) {
 logger.log(e.getMessage());
}

Current solution:

This code also try to do
several things. Delete a
page, exception handling
and logging. This code
might be improved by
splitting up into three
functions.

Possible improvement:

Naming

interface Modem
{
 public void dial(String phoneNumber);
 public void hangup();
 public void send(char c);
 public char recv();
}

class MyModem implements Modem {
 // ...
}

Current solution:There are two issues with this code.

The first issue is that the names are
probably not at the right level of
abstraction. It kind of assumes that
this is a phone modem and that only
a phone number is a valid way of
dialing. You should consider either to
change the name of the class to
PhoneModem, or change the
argument name for dial.

interface Modem
{
 public void dial(String connectionLocator);
 public void hangup();
 public void send(char c);
 public char recv();
}

class MyModem implements Modem {
 // ...
}

Possible improvement:

Responsibility

interface Modem
{
 public void dial(String connectionLocator);
 public void hangup();
 public void send(char c);
 public char recv();
}

class MyModem implements Modem {
 // ...
}

Current solution:
The other issue is that this
class violates the Single
Responsible Principle by
having two responsibilities;
connection management
and data communication.

interface DataChannel {
 public void send(char c);
 public char recv();
}

interface Connection {
 public void dial(String connectionLocator);
 public void hangup();
}

class MyModem implements DataChannel, Connection {
 // ...
}

Possible improvement:

Commands and Queries
interface Iterator {
 Object next();
 bool isDone();
 // ...
}

// ...

while (!iterator.isDone()) {
 Object o = iterator.next();
 // ... do stuff with the object
}

interface Iterator {
 Object current();
 void advance();
 bool isDone();
 // ...
}

// ...

while (!iterator.isDone()) {
 Object o = iterator.current();
 // ... do stuff with the object
 iterator.advance();
}

Current solution:

A function should either do something or
answer something, not both. It is
sometimes better to separate into a
query and a command.

Possible improvement:

Comments

// should be deleted?
if (timer.hasExpired() && !timer.isRecurrent()) {
 ... do stuff to delete timer
}

private boolean shouldBeDeleted(Timer timer) {
 return timer.hasExpired() && !timer.isRecurrent();
}

...

if (shouldBeDeleted(timer)) {
 ... do stuff to delete timer ...
}

Current solution:

Code with lots of comments are usually a sign of poor craftmanship. Comments are lies.
Uncommented code is usually much better than commented code. If you find a comment, try
to get rid of it.

Possible improvement:

Conclusion

The 7 tricks that we have discussed is just a few out of hundreds of
similar small improvements that you should consider.

Writing clean code is important, but it is also important to clean up
code as you see the opportunity.

Conclusion

Remember the boy scout rule?

Leave the campground
cleaner than you found it.

(see CCp14)

The Boy Scout Rule

Conclusion

If you do not take care of your codebase it will rot, and your project
(and maybe your company) will probably fail.

Analogy

Analogy

The codebase is like a kitchen

Analogy

suppose you are just going to make
something nice for yourself

Analogy

then, really, anything will do.

Even...

dirty kitchen

but, modern software development is usually
about more than just making something nice for
yourself.

It is usually about making something really
fancy...

together with a large team...

for some demanding customer...

Then it is obvious:

To succeed you need a clean and
functioning working environment.

Your codebase is like a kitchen.

Keep it clean so that you can create
spectacular solutions for your
demanding customers!

!

Leave the campground
cleaner than you found it.

(see CCp14)

The Boy Scout Rule

The Importance of hygiene
Uncle Bob has suggested that we are now about to "discover" techniques and principles in
software engineering that can be compared to the discovery of the importance of hygiene in
hospitals by Ignaz Semmelweis in the middle of the 19th century.

(Semmelweis in the middle with arms crossed)

At the point where a certain standard hygiene was accepted and enforced by the medical
establishment, doctors started to behave as a group of professionals. This happened about 60
years after Semmelweis' discovery. As software engineers we are not always behaving like
professionals, especially not at times where we let pressure from management and customers
decide whether we write clean code or not. We know that dirty code is going to slow us down
and delay the project, but still, for some reason, we sometimes end up in situations where we
do exactly what we are not supposed to do. Imagine how a group of doctors today would react
to a situation where they are told not to wash their hands between surgeries? Doctors act as
professionals. Unfortunately, as a group of software engineers, we are not there... yet.

Semmelweis found that by introducing
hand washing standards before surgery
the number of fatal incidence caused by
diseases dropped drastically. At the
time, diseases were attributed to many
different unrelated causes. Each case
was considered unique, just like a
human person is unique. Semmelweis'
hypothesis, that there was only one
cause, that all that mattered was
cleanliness, was extreme at the time,
and was largely ignored, rejected or
ridiculed. [wikipedia]

