
Programming is hard. Programming correct C is particularly hard. Indeed, it is uncommon to see a 
screenful containing only well defined and conforming code. Why do professional programmers 
write code like this? Because most programmers do not have a deep understanding of the 
language they are using. While they sometimes know that certain things are undefined or 
unspecified, they often do not know why it is so.

In this talk we will study small code snippets in C, and use them to discuss some of the 
fundamental building blocks, limitations and underlying design philosophies of this wonderful but 
dangerous programming language.
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Exercise

#include <stdio.h>

int main(void)
{
    int v[] = {0,2,4,6,8};
    int i = 1;
    int n = i + v[++i] + v[++i];
    printf("%d\n", n);
}

foo.c

What do you think this code snippet might print if you compile, link and run it
in your development environment? 
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It is important to understand that C (and C++) are 
not really high-level languages compared to most 
other common programming languages. 

They are more like just portable assemblers where 
you have to appreciate the underlying architecture 
to program correctly. This is reflected in the 
language definition and in how compiler deals with 
“incorrect” code.

Without a deep understanding of the language, its 
history, and its design goals, you are doomed to fail.
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void foo(void)
{
    int a;
    ++a;
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}
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{
    foo();
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}
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foo.c:6: warning: 'a' is used uninitialized in this function
1450342656



Pro tip:
 Always 

compile with 
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#include <stdio.h>

void foo(void)
{
    int a;
    ++a;
    printf("%d\n", a);
}
    
int main(void)
{
    foo();
    foo();
    foo();
}

$ cc -O -Wall -Wextra foo.c 
foo.c:6: warning: 'a' is used uninitialized in this function
1494497536
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$ cc -O -Wall -Wextra foo.c 
foo.c:6: warning: 'a' is used uninitialized in this function
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Pro tip:
 Always 

compile with 
optimization!

#include <stdio.h>

void foo(void)
{
    int a;
    ++a;
    printf("%d\n", a);
}
    
int main(void)
{
    foo();
    foo();
    foo();
}

$ cc -O -Wall -Wextra foo.c 
foo.c:6: warning: 'a' is used uninitialized in this function
1494497536
1494495224
1494495224
$ cc -O -Wall -Wextra foo.c 
foo.c:6: warning: 'a' is used uninitialized in this function
1450342656
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#include <stdio.h>

void foo(void)
{
    int a;
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}

void bar(void)
{
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}
    
int main(void)
{
    bar();
    foo();
}
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#include <stdio.h>

void foo(void)
{
    int a;
    printf("%d\n", a);
}

void bar(void)
{
    int a = 42;
}
    
int main(void)
{
    bar();
    foo();
}

$ cc foo.c && ./a.out
42

I am now going to show you something cool!

Can you explain this behavior?

If you can give a plausible explanation for this 
behavior, you should feel both good and bad. Bad 
because you obviously know something you are 
supposed to not know when programming in C. 

You make assumptions about the underlying 
implementation and architecture. Good because 
being able to understand such phenomenons are 
essential for troubleshooting C programs and for 
avoiding falling into all the traps laid out for you.
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#include <stdio.h>

void foo(void)
{
    int a;
    printf("%d\n", a);
}

void bar(void)
{
    int a = 42;
}
    
int main(void)
{
    bar();
    foo();
}
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$ cc foo.c && ./a.out
42

I am now going to show you something cool!

Perhaps this compiler has a pool 
of  named variables that it reuses. 

Eg variable a was used and 
released in bar(), then when 

foo() needs an integer named a 
it will get the same variable for 

reuse. If you rename the variable 
in bar() to, say b, then I don’t 

think you will get 42.
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#include <stdio.h>

void foo(void)
{
    int a;
    printf("%d\n", a);
}

void bar(void)
{
    int a = 42;
}
    
int main(void)
{
    bar();
    foo();
}

eh? 

$ cc foo.c && ./a.out
42

I am now going to show you something cool!

Perhaps this compiler has a pool 
of  named variables that it reuses. 

Eg variable a was used and 
released in bar(), then when 

foo() needs an integer named a 
it will get the same variable for 

reuse. If you rename the variable 
in bar() to, say b, then I don’t 

think you will get 42.

Yeah, sure...

Can you explain this behavior?



Strange explanations are often symptoms of having an invalid conceptual model!



Text Segment

Data Segment

Execution Stack

Heap

high address

low address

Memory Layout *
(automatic storage)

(allocated storage)

(static storage)

(instructions / read only data)

And sometimes it is useful to 
assume that an activation 
record is created and 
pushed onto the execution 
stack every time a function is 
called. The activation record 
contains local auto variables, 
arguments to the functions, 
and housekeeping data such 
as pointer to the previous 
frame and the return 
address. 

Activation Record

housekeeping data

arguments

local auto variables

(*) The C standard does not dictate any particular memory layout, so what is 
presented here is just a useful conceptual example model that is similar to 
what some architecture and run-time enviornments look like

It is sometimes useful to assume that a C program uses a memory model 
where the instructions are stored in a text segment, and static variables 
are stored in a data segment. Automatic variables are allocated when 
needed together with housekeeping variables on an execution stack that 
is growing towards low address. The remaining memory, the heap is used for 
allocated storage. 

The stack and the heap is typically not cleaned up in any way at startup, or 
during execution, so before objects are explicitly initialized they typically get 
garbage values based on whatever is left in memory from discarded objects 
and previous executions. In other words, the programmer must do all the 
housekeeping on variables with automatic storage and allocated storage. 
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}

int bar(int a, int b) {
    return a + b;
}
    
int main(void) {
    int i = foo(3) + foo(4);
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    int j = bar(foo(3), foo(4));
    printf("%d\n", j);
}
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int foo(int a) {
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    return a;
}
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}
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C and C++ are among the few 
programming languages where evaluation 

order is mostly unspecified. This is an 
example of unspecified behaviour.but you might also get
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programming language?



In C. Why is the evaluation order mostly 
unspecified?

Because C is a braindead 
programming language?

Because there is a design goal to 
allow optimal execution speed on a 
wide range of architectures. In C the 

compiler can choose to evaluate 
expressions in the order that is most 
optimal for a particular platform. This 

allows for great optimization 
opportunities.



#include <stdio.h>

int main(void) {
    int v[6] = {4,6,2,9};
    int i = 2;
    int j = i * 3 + v[i++];
    printf(“%d\n”, j);
}
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wrong?



#include <stdio.h>

int main(void) {
    int v[6] = {4,6,2,9};
    int i = 2;
    int j = i * 3 + v[i++];
    printf(“%d\n”, j);
}

What? Inconceivable! $ cc foo.cpp && ./a.out
42

This is a classic example of undefined 
behaviour. Anything can happen! Nasal 
demons can start flying out of your nose!I agree this is crap 

code, but why is it 
wrong?

In this case? Line 6. What is i*3? Is it 2*3 or 3*3 or something else?  
In C you can not assume anything about a variable with side-effects 

(here i++) before there is a sequence point. 



$ cc foo.cpp && ./a.out
42

I don’t care, I never 
write code like that.

#include <stdio.h>

int main(void) {
    int v[6] = {4,6,2,9};
    int i = 2;
    int j = i * 3 + v[i++];
    printf(“%d\n”, j);
}



$ cc foo.cpp && ./a.out
42

Good for you. But bugs like this can easily 
happen if you don’t understand the rules of 
sequencing. And very often, the compiler is 

not able to help you...

I don’t care, I never 
write code like that.

#include <stdio.h>

int main(void) {
    int v[6] = {4,6,2,9};
    int i = 2;
    int j = i * 3 + v[i++];
    printf(“%d\n”, j);
}



$ cc foo.cpp && ./a.out
42

Good for you. But bugs like this can easily 
happen if you don’t understand the rules of 
sequencing. And very often, the compiler is 

not able to help you...

I don’t care, I never 
write code like that.

But why do we 
not get warning 

on this by default?

#include <stdio.h>

int main(void) {
    int v[6] = {4,6,2,9};
    int i = 2;
    int j = i * 3 + v[i++];
    printf(“%d\n”, j);
}



$ cc foo.cpp && ./a.out
42

Good for you. But bugs like this can easily 
happen if you don’t understand the rules of 
sequencing. And very often, the compiler is 

not able to help you...

I don’t care, I never 
write code like that.

But why do we 
not get warning 

on this by default?
At least two reasons. First of all it is sometimes 

very difficult to detect such sequencing violations. 
Secondly, there is so much existing code out there 
that breaks these rules, so issuing warnings here 

might cause other problems.

#include <stdio.h>

int main(void) {
    int v[6] = {4,6,2,9};
    int i = 2;
    int j = i * 3 + v[i++];
    printf(“%d\n”, j);
}
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int a=41; a++; printf("%d\n", a);1
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int a=41; a++ & printf("%d\n", a);2
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5
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What do these code snippets print?
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int a=41; a = a++; printf("%d\n", a);
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What do these code snippets print?

int a=41; a++ && printf("%d\n", a);3

int a=41; if (a++ < 42) printf("%d\n", a);4

int a=41; a++ & printf("%d\n", a);2 undefined
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undefined
int a=41; a = a++; printf("%d\n", a);

5
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What do these code snippets print?

int a=41; a++ && printf("%d\n", a);3

int a=41; if (a++ < 42) printf("%d\n", a);4

int a=41; a++ & printf("%d\n", a);2 undefined

42

42

undefined
int a=41; a = a++; printf("%d\n", a);

5

When exactly do side-effects take place in C and C++?

int a=41; a++; printf("%d\n", a);1 42

?
int a=41; a = foo(a++); printf("42\n");

6



A sequence point is a point in the program's 
execution sequence where all previous side-
effects shall  have taken place and where all 
subsequent side-effects shall not have taken place 

Sequence Points



Between the previous and next sequence point an 
object shall have its stored value modified at most 
once by the evaluation of an expression.

Sequence Points - Rule 1

a = a++

this is undefined!



Furthermore, the prior value shall be read only to 
determine the value to be stored. 

Sequence Points - Rule 2

a + a++

this is undefined!!



Sequence Points

A lot of developers think C has many sequence points



Sequence Points

The reality is that C has very few sequence points.

This helps to maximize optimization opportunities
for the compiler.



Sequence points in C

1) At the end of a full expression there is a sequence point.

  a = i++; 
  ++i;
  if (++i == 42) { ... }

2) In a function call, there is a sequence point after the evaluation of the arguments, but before the 
actual call.

  foo(++i)

3) The logical and (&&) and logical or (||) guarantees a left-to-right evaluation, and if the second 
operand is evaluated, there is a sequence point between the evaluation of the first and second 
operands.

  if (p && *p++ == 42) { ... }

4) The comma operator (,) guarantees left-to-right evaluation and there is a sequence point 
between evaluating the left operand and the right operand.

  i = 39; a = (i++, i++, ++i);

5) For the conditional operator (?:), the first operand is evaluated; there is a sequence point 
between its evaluation and the evaluation of the second or third operand (whichever is evaluated)

  a++ > 42 ? --a : ++a;



#include <stdio.h>

void foo(void)
{
    int a = 3;
    ++a;
    printf("%d\n", a);
}
    
int main(void)
{
    foo();
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#include <stdio.h>

void foo(void)
{
    int a = 3;
    a++;
    printf("%d\n", a);
}
    
int main(void)
{
    foo();
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}

$ cc foo.c 
$ ./a.out
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void foo(void)
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void foo(void)
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side-effects really take 

place in C?

ehh...



Strange explanations are often symptoms of having an invalid conceptual model!



Behavior

implementation-defined behavior:  
the construct is not incorrect; the code must 
compile; the compiler must document the 
behavior

unspecified behavior: the same as 
implementation-defined except the behavior 
need not be documented

undefined behavior: the standard 
imposes no requirements ; anything at all can 
happen, all bets are off, nasal demons might fly 
out of your nose.

#include <stdio.h>
#include <limits.h>
#include <stdlib.h>

int main()
{
    // implementation-defined
    int i = ~0;
    i >>= 1;
    printf("%d\n", i);

    // unspecified
    printf("4") + printf("2");
    printf("\n");

    // undefined
    int k = INT_MAX;
    k += 1;
    printf("%d\n", k);
}

Note that many compilers will not give you any warnings when compiling this code, and due to the 
undefined behavior caused by signed integer overflow above, the whole program is in theory undefined.
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the C standard defines the expected behavior, but says very little 
about how it should be implemented.



the C standard defines the expected behavior, but says very little 
about how it should be implemented.

this is a key feature of C, and one of the 
reason why C is such a successful 
programming language on a wide range 
of hardware!
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Integer overflow gives undefined behavior. If you want to 
prevent this to happen you must write the logic yourself. This is 

the spirit of C, you don’t get code you have not asked for.
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#include <stdio.h>
#include <stdbool.h>

void foo(void)
{
    bool b;
    if (b)
        printf("true\n");
    if (!b)
        printf("false\n");
}

foo.c

This program is UB because b is used without being initialized. But in 
practice, what do you think might happen when this function is called?
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if (b)
  printf("b is true\n");
if (!b)
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A real story of “anything can happen”
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#include <stdio.h>
#include <string.h>

struct X {
    int a;
    char b;
    int c;
};

int main(void)
{
    struct X a = {42,'a',1337};
    struct X b = {42,'a',1337};

    if (memcmp(&a, &b, sizeof a) == 0)
        printf("equal\n");
    else
        printf("not equal\n");
}

a few words about memory
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it, then you are doomed to create lots of bugs...
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The spirit of C

trust the programmer
• let them do what needs to be done
• the programmer is in charge not the compiler

keep the language small and simple
• small amount of code → small amount of assembler
• provide only one way to do an operation
• new inventions are not entertained

make it fast, even if its not portable
• target efficient code generation 
• int preference, int promotion rules
• sequence points, maximum leeway to compiler

rich expression support
• lots of operators
• expressions combine into larger expressions


