Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system

——

code cover 1;c>

e — —
] At costs module (csts deployment
. enpine
h _ o =
emulator co-"l -uc—us —
int cg ation_

= —
2 ol
%n‘uutors
< L tests >¢——4 S g..\rg t A
e ;':_;_f
! \{codc base /
- o P
— £ d M
g — static code system tests / -
static code analysis — [ron
I _ ™
analyss l
module tests m— ——— ’
— _—/&_ =i = J

——
— A — & QA status ol
233 ‘\\\ \\ SCEMano testng software
(cynnu'--; code aralysis) e~ — distribution
~— S

Cisco’s development and innovation centre in Norway develops videoconferencing products, telepresence technology and collaboration
solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of
lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very much
supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into establishing
effective feedback loops guiding the whole development process.We are not only talking about rapid feedback from build systems and
continuous integration, but also from regression tests, advanced scenario testing and real users.The focus on establishing feedback loops
goes beyond the product development workflow, it is a principle applicable to the whole organization. This talk will present a concrete
insight into the software development workflow that we are using today, before discussing what you need to consider if you want to set
up an equally effective feedback-driven product development workflow in your organization.

a 30 minute session, Continuous Delivery & DevOps Conference in Oslo (CoDe)
April 29,2015
Olve Maudal

Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system

> —

7 ;codc cover 1;<:> el
TR
,‘ e tosts module (csts deployment
. engine
h -._ e —
/CQ’l uc‘\" = /
-

ntegration

- —— —
code base

/, —
static code
analysis f>
\ analyss o .
uile § —
3 \\ QA status s, enano testng softwa §
C.’ymu'--; code U\lly':s/ i L(d seributic
e —

Cisco’s development and innovation centre in Norway develops videoconferencing products, telepresence technology and collaboration
solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of
lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very much
supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into establishing
effective feedback loops guiding the whole development process.We are not only talking about rapid feedback from build systems and
continuous integration, but also from regression tests, advanced scenario testing and real users.The focus on establishing feedback loops
goes beyond the product development workflow, it is a principle applicable to the whole organization. This talk will present a concrete
insight into the software development workflow that we are using today, before discussing what you need to consider if you want to set
up an equally effective feedback-driven product development workflow in your organization.

a 30 minute session, Continuous Delivery & DevOps Conference in Oslo (CoDe)
April 29,2015
Olve Maudal

Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system

> —

7 ;codc cover 1;<:> el
TR
,‘ e tosts module (csts deployment
. engine
h -._ e —
/CQ’l uc‘\" = /
-

ntegration

- —— —
code base

/, —
static code
analysis f>
\ analyss o .
uile § —
3 \\ QA status s, enano testng softwa §
C.’ymu'--; code U\lly':s/ i L(d seributic
e —

Cisco’s development and innovation centre in Norway develops videoconferencing products, telepresence technology and collaboration
solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of
lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very much
supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into establishing
effective feedback loops guiding the whole development process.We are not only talking about rapid feedback from build systems and
continuous integration, but also from regression tests, advanced scenario testing and real users.The focus on establishing feedback loops
goes beyond the product development workflow, it is a principle applicable to the whole organization. This talk will present a concrete
insight into the software development workflow that we are using today, before discussing what you need to consider if you want to set
up an equally effective feedback-driven software development workflow in your organization.

a 30 minute session, Continuous Delivery & DevOps Conference in Oslo (CoDe)
April 29,2015
Olve Maudal

Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system

——

code cover 1;c>

e — —
] At costs module (csts deployment
. enpine
h _ o =
emulator co-"l -uc—us —
int cg ation_

= —
2 ol
%n‘uutors
< L tests >¢——4 S g..\rg t A
e ;':_;_f
! \{codc base /
- o P
— £ d M
g — static code system tests / -
static code analysis — [ron
I _ ™
analyss l
module tests m— ——— ’
— _—/&_ =i = J

——
— A — & QA status ol
233 ‘\\\ \\ SCEMano testng software
(cynnu'--; code aralysis) e~ — distribution
~— S

Cisco’s development and innovation centre in Norway develops videoconferencing products, telepresence technology and collaboration
solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of
lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very much
supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into establishing
effective feedback loops guiding the whole development process.We are not only talking about rapid feedback from build systems and
continuous integration, but also from regression tests, advanced scenario testing and real users.The focus on establishing feedback loops
goes beyond the product development workflow, it is a principle applicable to the whole organization. This talk will present a concrete
insight into the software development workflow that we are using today, before discussing what you need to consider if you want to set
up an equally effective feedback-driven software development workflow in your organization.

a 30 minute session, Continuous Delivery & DevOps Conference in Oslo (CoDe)
April 29,2015
Olve Maudal

Cisco Systems, Innovation Center
Lysaker, Norway

Telepresence

O 7=

@

e

Telepresence L

Some of the stuff we develop at Lysaker

at Lysaker we are ~350 engineers

most of us work with software developement
FiR ij " = ﬂ ;
’\25 :\\.,)\, ~ A \t p =,

V)

eenlaes g

but we also do...

Electronics / Hardware

- . <= . B
Rt T Tt LS S e
D ‘UH‘J: ‘U'\U v E“ : - :U'\U .-r""""" = .Uﬂb‘l

.........

.....
5. Wlntin

...................
.....................

ffrt

fRANE fRerr preiy

BRRRE wunns Ak

Mechanics

Industrial Design and User Experience Design

1992 2015

O
N’

Ing in

L ook

the future

The main codebase at Lysaker

embedded software development

about 200 software developers

typically more than 100 commits per day
4-5 million lines of code, mostly C and C++

visible traces back to the late 1980’s
~20 products, ~50 builds

At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)

“... an organization that develops spectacular products and
outperforms all competitors™

The secret sauce

The secret sauce

The secret sauce

The most important ingrediences

The secret sauce

The most important ingrediences

Effective feedback loops
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often

The secret sauce

The most important ingrediences

[0 Effective feedback loops)
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often

Facts about advanced product development

Few high tech projects are like running
down on a paved road where you can see the ...

SINCE 1929

J 'RUNNER's

vents

rucep{lluce

i

]
Q
3

4

b

=
@
-4
u
z
z
~
=
-
—

vents
'S

YRUNNER
4 DEN <since 193

12

racepiace

Most projects are more like...

extreme orienteering

N

ble terra

in impossi

in the dark

G)(l("" "\l\t'.\ ('J"‘ Juc‘v'c'f.. n‘[)

_HAZ.L(L;(5l
)

(t) ook 40 e odhe Side.
* Jdheve Lvr o \’ (&) Crok vy Side.
‘1 . .}c\MOn Y Ci-}{)o aae Mo 3},)&4[_, Lo (J_

there " U "luao‘o ¥

. . thee al\ 1(:"(»».-1/1'\‘:‘-)
with only a sketchy map as guidance . - oo |

T AMCIICML BT b

|
”’\(tr s e M-'cq-' I A e (.LI
\{ L’Q' Lafant @ --Ql wo " ‘)“'\A“ Wl

ool A evoisiand)

j9 Ho Yha Ji(AT
A Vo VT o A L

. “
"':’J‘ LA N A l‘

r’ﬁht.fo

g rCOrner
o - ‘ ‘:,Wal‘ ".)',..‘

" Lo . — s Cres et] \\(JQ
¢ [1 = RS

P ruvid

@:‘:)@

.)
Ol‘! '.,...J'.-

[Peron.. <

MOt Mo hal - —

J

i/; e Ale 40 &.\r.fv"l“' ‘0/
e . @ \' ""I Povituche
: £ iy b :
(-\\ /)‘\ | ' ,“'K‘ (’ b“.(
\ R XU

s)
“r " tlﬁ“'(0{ i z‘f
~1._ A ‘-' tad
- . e
) =1 “wa
] A
At N

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

An example of a
continuous integration
and deployment system

Continuous integration
and deployment
system

CE>

Continuous integration
and deployment
system

emUIatD\

> ; »

target

Continuous integration
and deployment
system

emulator

unit teD
<target

continuous
integration

QA statu>

Continuous integration
and deployment
system

emulator

Qit teD v
\
o

continuous
integration

code base

QA statu>

Continuous integration
and deployment
system

emulator

unit teD
<target

continuous
integration

code base

QA statu>

Continuous integration
and deployment
system

Qit tD\
continuous
integration

code base

emulator

unit teD
<target

QA statu>

Continuous integration
and deployment
system

Qit tests \ / mOdU|eteD

continuous
integration

code b;

QA statu>

emulator

<>

B

Continuous integration
and deployment
system

Qit tem)\ /@me teE

emulator

continuous
integration

builds
\

K

code base

Qit tests>¢ } 7
\
QargeD)

QA statu>

Continuous integration
and deployment
system

Qit tests> @ule te) deploxment
\ / / engine
continuous
integration

code base

emulator

\
o

builds
\

)

<>

QA statu>

Continuous integration
and deployment
system

Qit tests> @ule te) deploxment
\ / / engine
continuous
integration

code base

emulator

\
o

builds
\

)

<>

system t@

QA statu>

Continuous integration
and deployment
system

unit tests> @ule te) deploxment
/ engine

[<builds
\

continuous
integration

emulator

unit teD

)

<>

code base

QA status

Continuous integration
and deployment
system

unit tests> @ule te)

/ engine

emulator continuous

integration

[<builds
N—

unit tGD

code base

QA status

deployment

2 G

system tests

@I‘IO t@ software
distribution

Continuous integration
and deployment
system

<umt rests \ /@me te;

/ engine

emulator continuous

integration

[<builds

SN—

unit tGD

code base

QA status

deployment

2 G

system tests

@I‘IO t@ software
distribution

Continuous integration
and deployment @cov@
system /
<unit tests @ule te) deploxment
N/ e

[<builds

SN—

emulator continuous
integration

code b;
static code system tests
analysis 1
QA status < . > j
scenario testing software

distribution

Continuous integration
and deployment @cov@
system
<unit tests @ule te) deploxment
N/ e

continuous
integration

emulator

/ static code
tatlc code anaIyS|s

analy5|s

code base

system tests

@I‘IO t@ software
distribution

QA status

Continuous integration
and deployment @cov@
system /
<unit tests \ /@ule te) deployment

/ engine
emulator continuous
integration
builds
‘ code b;

SN—
static code
static code analysis
analysis J
module tests 7 -
QA status < . >
scenario testing software
dynamic code @ distribution

)

<>

system tests

——————

-=" -

Continuous integration et ..
and deployment R code coverage Tt
system Pl

! unit tests @ule te) deploxment
\ / / enhgine
[<builds

T

system t@
A

scenario testing software
distribution

‘_---.

continuous

emulator
integration

.
.
.
.
.
.
v

‘ code b;
static code

static code analysis
analysis I

module tests
QA status

dynamic code analysis

L e L e R L T
. L L e e Mg R o v
Xxampile Of visual teeabac ages use all/most developers):- - =i = ~
BN e e s R S LR e e
BEL w W e fvsitasfer s ‘e EEL i
LR e .. B W g,
R s - LY S I R T - N e ave [ReTT—
W AT SRR,
b I - e AL AT A W ——— - L R B SR A e ek e &
BRIC 7 Ar e Mt R e L T
O Y [L s Lnabms tevenins bagaras LAY al shmes padon
e AT P > * ::.: : : O —— : .::-n-m- T
S fss lonas U baman o) o tus et s 2 i A0 A e W et SO
PG o - RAM L hesiians baliyie “.
oo A hma @ e e e e v T e A Svsiin S Eim 4 2 RIS Svatu NN R BEIU A R e T el R e e
Tead RN ded @ AadprasaiPael REelc et Ane® M. WA e B praniiise el . AT N o Sk B s amar e LA
gﬂlm- r— ree- 1) 9 » et PR = T ster it Sanlnaies we R
P e tew. e el S iew) = ITNW ST 'mt L T .. B
- e B acn BN e B e b f fn - T vl ass
S Selle .o S s b . L s R
L B Ses e S0smienv s ep ReSmelamwine dRRS, '
R et raersgeom Gl 7 e S s san TR e SIS
Dy e e w AT At By o y. - DR e B et REa T
Vo YT MEr . WMN . 2 -
F T L L :_=‘-‘~3

boevion . W) |Lumt

SEE———n diff from viewvc

.y
:l. - -
.t - L e TR A eEA R A S
R —
::-.-' At W O - - P ——
- oo
BT .- — ve - AOME TRCTT b e R SRR SR PR e -..t’-- e A e
- - - - B i ST e e R
e . - - R
==D—” ———. ’ -
-, omms
. - - “ R il A e
W e T - —— - TR | Y R TR LA |
:m e e SR
- P, - - - -
P (o i~

- EERES Lk SR S i R BRI
R LTS

L) R R L Y

O e - P SO,
- A maa
WA AL e | R A SRS SRR AR S e g et ae e AR e e

- LA R A g R
-

irc channel L Thamne

e Jqaamr
- e b v . S——

H.264 delay trend

R

- ey .
- x -1 0| R s b mwav e
o - R ™Y Wed e ow mey mee By L Y S o —
- oo " e
A - - — %; .
- 3 ' *
- =

p‘---pp. .- -

o

T A
o

diddddidd

P 4

-

4

1 obt M

o lipsync trend

:

baddaadiig

4.t d

4

4<44J47440-‘L

et
:

defect trends

.
MR AN TN A W W UAR AR eI e 2R IO e

endpoint timing

- ke
—— b — B -
— - - e
. . - -
L - - -
S . - -
- 4 - -
- - - -
- . . .
- - - —
e - - . -
- - . -
- ' . -
—— - - L
- . ’ -
- . . -
e 4 . -
- 4 - -
- .

S e -

coverity

m SEMUS v s i RSl
- Eeastimiosces

-y -

- snsdem W rtas v 8

e Rl T —
- e e et

PRSP, e L
G
e v

Lo ey e e e
e R e]
B -

- N ——
S -
S B v e D S —

el ’ —_—— [T ——

-— -
a .- DRNNRT RO MAN X
- ERA BN R AR
e [S e M.
Pa— - - ———
- — - ———
- P .
e e — -
- e
ha X
a Fewes ntei reee - e AL 3
= Tt b 2k S s BB
1o e - — T ——
- . e - —— i —————

QA Status

code coverage

- -
OOOOOOOO

emulator

software

distribution

scenario testing

dynamic code analysis

We want something like that! Where do we start?

We want something like that! Where do we start?

® Create a robust build system

dynamic code analysis

We want something like that! Where do we start?

® Create a robust build system
® |ntegrate continuously

dynamic code analysis

We want something like that! Where do we start?

® Create a robust build system
® |ntegrate continuously
® Grow professionalism

Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-VVerror)

Superfast, incremental and partial builds

Heterogeneous development environment (avoid the VSé6 effect)
Invest in writing good emulators

Make sure unit tests can run on dev machine, emulator and target
Integrate your test systems into your build system (--test-all)

Integrate continuously

Manual integration vs Automatic integration

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Test everything, for all commits

Superfast feedback

Invest in equipment for fast and complete system testing
Prune unused metrics and feedback mechanisms

Slim down your QA department

Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews
beware of the observer effect

optimize for your best developers

Make sure that everybody is working towards a
common goal.

Control does not always work

Focus on flow

[THE MAGIC ROUNDABOUT |

Ring road
| Cirencester

A4289\
®- @, [(112)
@ Marlborough |
Town @ Burford
centre Oxford

H [z

A4312

:Flu‘;j e "ur; .?Hl s; q.,.w
4 = ‘ ~p A

o)
N
5»L i3

J Gurve ¥
Mo "U -

i,

i ., o
‘l : \) N

" -

The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.
(Princess Leia)

" -

The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.
(Princess Leia)

