Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system
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Cisco’s development and innovation centre in Norway develops videoconferencing products, telepresence technology and collaboration
solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of
lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very much
supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into establishing
effective feedback loops guiding the whole development process.We are not only talking about rapid feedback from build systems and
continuous integration, but also from regression tests, advanced scenario testing and real users.The focus on establishing feedback loops
goes beyond the product development workflow, it is a principle applicable to the whole organization. This talk will present a concrete
insight into the software development workflow that we are using today, before discussing what you need to consider if you want to set
up an equally effective feedback-driven product development workflow in your organization.

a 30 minute session, Continuous Delivery & DevOps Conference in Oslo (CoDe)
April 29,2015
Olve Maudal
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Some of the stuff we develop at Lysaker




at Lysaker we are ~350 engineers



most of us work with software developement
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but we also do...
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Mechanics




Industrial Design and User Experience Design
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The main codebase at Lysaker

embedded software development

about 200 software developers

typically more than 100 commits per day
4-5 million lines of code, mostly C and C++

visible traces back to the late 1980’s
~20 products, ~50 builds



At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)

“... an organization that develops spectacular products and
outperforms all competitors™
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Focus on value
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Facts about advanced product development



Few high tech projects are like running
down on a paved road where you can see the ...
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Most projects are more like...



extreme orienteering
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http://www.youtube.com/watch?v=oetF3UTIwbc
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We want something like that! Where do we start?

® Create a robust build system
® |ntegrate continuously
® Grow professionalism



Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-VVerror)

Superfast, incremental and partial builds

Heterogeneous development environment (avoid the VSé6 effect)
Invest in writing good emulators

Make sure unit tests can run on dev machine, emulator and target
Integrate your test systems into your build system (--test-all)



Integrate continuously

Manual integration vs Automatic integration

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Test everything, for all commits

Superfast feedback

Invest in equipment for fast and complete system testing
Prune unused metrics and feedback mechanisms

Slim down your QA department



Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews
beware of the observer effect

optimize for your best developers









Make sure that everybody is working towards a
common goal.



Control does not always work




Focus on flow
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The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.
(Princess Leia)
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