Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system
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Cisco’s development and innovation centre in Norway (Lysaker) develops videoconferencing products, telepresence technology and
collaboration solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and
millions of lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very
much supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into
establishing effective feedback loops guiding the whole development process.We are not only talking about rapid feedback from build
systems and continuous integration, but also from regression tests, advanced scenario testing and real users. The focus on establishing
feedback loops goes beyond the product development workflow, it is a principle applicable to the whole organization.

This talk will present a concrete insight into the software development workflow that we are using today, before discussing what you
need to consider if you want to set up an equally effective feedback-driven product development workflow in your organization. The talk
is relevant for everyone involved product development where software is a key component.

a 60 minute session for Kongsberg Maritime Subsea (Simrad), Horten
November 24,2016, Olve Maudal
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Some of the stuff we develop at Lysaker




at Lysaker we are ~350 engineers



most of us work with software developement
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but we also do...



Electronics / Hardware

— - . v ATl
&L T T AR A e .

.UHU -UT““‘ '.-E-' PELEEEE AIALR § §"4annnnss) o ‘U?‘U‘

. . -

......
LT " shiaia

U

Huyun

.‘ﬂ t ] JRAN

CromnaV

" -~

...................
.......................

...............

A

ftr e M

00000 fReme
ERRRE s

.



Mechanics




Industrial Design and User Experience Design
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The main codebase at Lysaker

embedded software development

about 200 software developers

typically more than 100 commits per day
4-5 million lines of code, mostly C and C++

visible traces back to the late 1980’s
~20 products, ~50 builds



At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)

“... an organization that develops spectacular products and
outperforms all competitors™



The secret sauce

The most important ingrediences

(0 Effective feedback loops )
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often




Facts about advanced product development



Few high tech projects are like running
down on a paved road where you can see the ...
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Most projects are more like...
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in impossible terrain




~with a group of people
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in the dark
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http://www.youtube.com/watch?v=oetF3UTIwbc



http://www.youtube.com/watch?v=oetF3UTIwbc

An example of a
continuous integration
and deployment system



Continuous integration
and deployment
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Continuous integration
and deployment code coverage
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We want something like that! VWhere do we start?

® Create a robust build system
® |ntegrate continuously
® Grow professionalism



Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)

Superfast, incremental and partial builds

Heterogeneous development environment (avoid the V$6 effect)
Invest in writing good emulators

Make sure unit tests can run on dev machine, emulator and target
Integrate your test systems into your build system (--test-all)



Integrate continuously

Manual integration vs Automatic integration

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Test everything, for all commits

Superfast feedback

Invest in equipment for fast and complete system testing
Prune unused metrics and feedback mechanisms

Slim down your QA department



Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews
beware of the observer effect

optimize for your top 80% developers









Make sure that everybody is working towards a
common goal.



Control does not always work
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Focus on flow
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(reproduced with kind permission of Thom Holwerda)






Reductionism vs

Reductionism is a philosophical position that a
complex system is nothing but the sum of its
parts, and that an account of it can be reduced
to accounts of individual constituents.

Systems thinking

Systems thinking is the process of
understanding how things influence one
another within a whole

Frederick Winslow Taylor (1856-1915)

W. Edwards Deming (1900-1993)



Learn to surf, instead of trying to control the waves...



The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.
(Princess Leia)




