Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system

....

code cover lgc

— ';—___
\ module (CR deployment
/x enpire
< emulator conun C‘US

integration_
‘ uilg

1 rge

< sysem teses)
w— —
scenario testing software
N ——— \.dnu:b.ﬂxcn-,

Cisco’s development and innovation centre in Norway (Lysaker) develops videoconferencing products, telepresence technology and
collaboration solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and
millions of lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very
much supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into
establishing effective feedback loops guiding the whole development process.We are not only talking about rapid feedback from build
systems and continuous integration, but also from regression tests, advanced scenario testing and real users. The focus on establishing
feedback loops goes beyond the product development workflow, it is a principle applicable to the whole organization.

This talk will present a concrete insight into the software development workflow that we are using today, before discussing what you
need to consider if you want to set up an equally effective feedback-driven product development workflow in your organization. The talk
is relevant for everyone involved product development where software is a key component.

a 60 minute session for Kongsberg Maritime Subsea (Simrad), Horten
November 24,2016, Olve Maudal

Innovation Center

Lysaker, Norway

’

Cisco Systems

r/

___________ = \.\m\
il

\.; \n th\t;
Uiy Bt
7 ity h gt
Falltt 115

¥

)

-

LB

SN

Tol

Telepresence o

» -~ - . N
p \ v N
v —

AN)/

-

- " !.
N
. W -

N
_\‘\‘§“ t
-

Some of the stuff we develop at Lysaker

at Lysaker we are ~350 engineers

most of us work with software developement
lg‘j i\ /. , [ey 3
A 2u

eenlaeS g

but we also do...

Electronics / Hardware

— - . v ATl
&L T T AR A e .

.UHU -UT““‘ '.-E-' PELEEEE AIALR § §"4annnnss) o ‘U?‘U‘

. . -

......
LT " shiaia

U

Huyun

.‘ﬂ t] JRAN

CromnaV

" -~

...................
.......................

...............

A

ftr e M

00000 fReme
ERRRE s

.

Mechanics

Industrial Design and User Experience Design

1992 2015

O
)

Ing in

L ook

the future

The main codebase at Lysaker

embedded software development

about 200 software developers

typically more than 100 commits per day
4-5 million lines of code, mostly C and C++

visible traces back to the late 1980’s
~20 products, ~50 builds

At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)

“... an organization that develops spectacular products and
outperforms all competitors™

The secret sauce

The most important ingrediences

(0 Effective feedback loops)
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often

Facts about advanced product development

Few high tech projects are like running
down on a paved road where you can see the ...

events

raceplace 1), ... I l N I s H

racepl
Place events

- ’ l\ = " .. . P
JJ\RUNNER'S H AP J 'RUNNER'’s

L)

":28-25
i}

A 9DEN sincesos

SINCE 1900

T -

Most projects are more like...

b0
=

extreme orienteer

in impossible terrain

~with a group of people

. L N SN -
- ™ . :
ARG Y~ P o el gy

in the dark

G\)(pe it Hutes del Jamon - a0 -

-'}\(l¢ AT e Mr.q.' tw Ahe (t‘\’ P(A?A_del Su\'

\(YU want o ..4 w0 Sandooicl ’

C’, }k(vv \L' ",))o = = G P A -*D .’h ﬁ-}h‘f g“\o-
ane Mo 3?.)“[7 Ve 4.
there 'S ‘luAt‘-r

heo o\ ((;)(wvi/1q‘§cs

with only a sketchy map as guidance ..« o |

fmu'u(fﬁi 3w ba
caredol 99 o Tha Ji(hT

ol - O b AW
[[WK plect_anAJaras P RoT

CoOner
- \ Sl 4o)

A EN : av 1 | '\\‘Q'
. // = v ((o‘ - ‘;l)
= - ')

r’
\ Lo ¢

/
Jc\mon Jeso
woldh evoisieand 1 Ci

P Awe to bar "-fq’oea (Ay

b"l Movitache

'}*a«‘ e b‘ll

: ?:. \ m\in a hm“, of’ lon

\ S

‘) = MV il ed

» —— - -— ' {'0(

(< E’, -,;!,.__ < rlv“ oy ‘m.') oa YUMM\,

""’A«
\ %\ (‘ ‘uﬂk
_——

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

An example of a
continuous integration
and deployment system

Continuous integration
and deployment
system

CED

Continuous integration
and deployment
system

gulator

e
<g

Continuous integration
and deployment
system

emulator

unit tests>¢
<target

continuous
integration

QA staD

Continuous integration
and deployment
system

emulator

unit tests>¢
code base
N—
target

QA staD

continuous
integration

Continuous integration
and deployment
system

emulator

unit tests>¢
code base
N—
target

QA staD

continuous
integration

Continuous integration
and deployment
system

Qit teSD\
continuous
integration

emulator
unit tests>¢ K
code base

SN—
target
QA staD

Continuous integration
and deployment
system

Qlt tesD\ /@me t@

conUnuous
mtegratlon

emulator

Qit tests>¢

‘ code base

\
target
QA staD

Continuous integration
and deployment
system

Qit tesD\ module t@

continuous

emulator

integration

builds
\

Qit tests>¢

‘ code base

\
target
QA staD

Continuous integration
and deployment
system

continuous
integration

emulator

‘

<target

Qit tesD /Qodule t@ dePoym?
\ engine

K — M

code b;
\
QA staD

>

system tests

Continuous integration
and deployment
system

continuous
integration

emulator

‘ code base

\
target

QA status

Qit tesD module t@ dePoym?
\ engine

builds
e

>

system tests

Continuous integration
and deployment
system

continuous
integration

emulator

‘ code base

\
target

QA status

Qit tesD /Qodule t@ dePoym?
\ engine

builds
=

>

system tests

Continuous integration
and deployment
system

continuous
integration

emulator

‘ code base

SN—
target
system tests
QA status . .
scenario testing software
distribution

Qit tesD /Qodule t@ dePoym?
\ engine

builds
T

(

>

Continuous integration
and deployment code coverage

system
Qit tesD /Qodule t@ dePoym?
\ engine

continuous
integration

emulator

‘ code base

SN—
target
system tests
QA status . .
scenario testing software
distribution

builds
T

(

>

Continuous integration
and deployment code coverage

system
Qit tesD /Qodule t@ dePoym?
\ engine

continuous
integration

emulator

‘ code base

N—
target v
static code system tests
analysis

QA status < . >
scenario testing software
distribution

builds
T

(

>

Continuous integration
and deployment code coverage

system
Qit tesD /Qodule t@ dePoym?
\ engine

continuous
integration

emulator

‘ code base

SN—
target v
static code system tests
static code analysis

analysis 7 7

QA status . .
scenario testing software
distribution

builds
T

(

>

Continuous integration
and deployment
system

emulator

‘

<target

code coveraE
Qit t)\ /ch . t>

deployment
engine

continuous
integration
builds
N—
: \/
Y *’ \/
code base
N—

v

static code system tests
static code analysis
analysis J

@ule tests

QA status

@rio t@ software
distribution

.....

- -~

Continuous integration .

and deployment e code coverage
system
q
q
! . deployment
! unit tests \ /@'ule t@ zn;ne
emulator " continuous
\ integration
)}
L builds
T e
unit tests v V
‘ code base
SN—

v

static code

static code analysis

analysis J
module tests
QA status . .
scenario testing software
distribution

dynamic code analysis

target
system tests

L S I e e R L e L e Tl
R L - - g Lt o
xample of visual feedbac ages use all/most developers):- - = = =
L L S R T A e
B v B v frnatae fum s - Cubees e
BRI e Y ey . R L T
———— ;iw o R s . . . - . . R) L It T - -
b P— - e AL AT tr e S ———— - - - e BT e I e s s s b e
D BRIE T N N ww mk-“ﬂn
] i mummmnmcmm o QUM s o prasiniertisimy - Lot s g U84 i i ity
'um"-_-:s e — Bl W T mreniutestan i o e n—-.v—-m--u--an
T W Weea e pe s cie s eV e L e L T e R v
T —— A e L [T U — . Fva e dne 8 b s
B T S PR—— - PRN— 1230 oan L o
Yoo v B e o e Hebel e dd L L — oxn - n 1 - LG
MG WA e T prasiskebialiye e AAATS By v = 4 S B s wmas e At
0 S A N S S S AR 0 (et OEER v N steafoduimin o oS
Bame b e fem. W L e L Vgriew) » I SOV | R T L Ead L
P - - e R BON e K miew st e e ww RETTLE L T S vy
M tes e Cpases- ! H WA e B emearreabayen . Seee
me-a.-n-mn--!-.-,-—n.mn M B w K yevevvemvevenry., e P —————
Jow: : eI\ Wat SN SapE Vel S /S AR - RIS T T T T — e SRl g s Daibes
Voo - .._. ._ _.:o.—.u»-. g .)~ -ﬂwm - = — -
- -

viewvc — audio delay trend bugzilla

A — Sy
——
Vh b A - PN Adin
Rttt
A -
=2 I rrom viewvce
-g--
- e s
WA e - -——
. .-
R e e
v -
:l e e . -
b
-~ .-::':- - D LR L LT T
-~ ———
B — wr AcT W R W AR SRR SRR e we - A -
= - - e R
Rl e - -
e e -
O W acms
S Nt B e Bl - T
::wm-—- — - - TR | SR AT T Ad e |
e S & & o -~ A
= - - ~
- a——
SR ey - ‘_.“ Zrm == e
A J -y ——
e B il
::.-.— ~— - - ..-—-w---—. ——
LA S Rl Eab el
B L i W e e ol - A e
- S A A -
ke
.

irc channel

lm- |m ,—o---)-p-- R

continuous integration ;

RSN NN ¥

lipsync trend

e Wi
endpoint timing i | B

e
2 2 2 : x =z =2
v v v v v v

P e]
WA e e
amsnery | MR ruae
s L
AR e
- R
.,.._":_." R
oy B e
B e
& e oy - - I W -
— A . ~ Semmar—e | et 0w |
i
~ - - _— - B v - sy
bt - - — B Ve e G ¢ B m—
et - - - wawtent | e e o e —— |
WA e etess - S e . — ——
s 2 & — -——— -
- = -] o
ome . . gt | - TN BT LN SN X
.o - Ead — | - AR E R AR,
S—— - - - e | - S M.
- -~ - - - - S ———
- ' - - - | - . ————
- - > 1l e .
— . . e | oo -
- . - - ——— — st —— T PR e e
- a - - | Tomtn Aon suei DRUN PO RLE DN X
- " . - n | B e TN I 000 e K
- . . - = | ke .- L A S
H P . -
e EER - e M L 4 - - - a————

defect trends

coverity QA Status

We want something like that! VWhere do we start?

® Create a robust build system
® |ntegrate continuously
® Grow professionalism

Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)

Superfast, incremental and partial builds

Heterogeneous development environment (avoid the V$6 effect)
Invest in writing good emulators

Make sure unit tests can run on dev machine, emulator and target
Integrate your test systems into your build system (--test-all)

Integrate continuously

Manual integration vs Automatic integration

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Test everything, for all commits

Superfast feedback

Invest in equipment for fast and complete system testing
Prune unused metrics and feedback mechanisms

Slim down your QA department

Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews
beware of the observer effect

optimize for your top 80% developers

Make sure that everybody is working towards a
common goal.

Control does not always work

Mle sl .

2
g

Focus on flow

[THE MAGIC ROUNDABOUT

| Ring road
Cirencester
A4289 \

. @ [(M4)
1o . 8= oo

centre Oxford

-
g
ey

L"e ONMLY VAL measugemen T

e ——————

OF Code Quaciry: WTFs/nivure

—m

(c) 2008 Focus Shift

(reproduced with kind permission of Thom Holwerda)

Reductionism vs

Reductionism is a philosophical position that a
complex system is nothing but the sum of its
parts, and that an account of it can be reduced
to accounts of individual constituents.

Systems thinking

Systems thinking is the process of
understanding how things influence one
another within a whole

Frederick Winslow Taylor (1856-1915)

W. Edwards Deming (1900-1993)

Learn to surf, instead of trying to control the waves...

The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.
(Princess Leia)

