
Feedback-driven Product Development

Cisco’s development and innovation centre in Norway (Lysaker) develops videoconferencing products, telepresence technology and
collaboration solutions. This is embedded product development involving advanced mechanics, customised electronics, movable parts and
millions of lines of software mostly written in C and C++. Over the last two decades we have gradually established a workflow that very
much supports lean and agile product development for hundreds of engineers working closely together. A lot of effort goes into
establishing effective feedback loops guiding the whole development process. We are not only talking about rapid feedback from build
systems and continuous integration, but also from regression tests, advanced scenario testing and real users. The focus on establishing
feedback loops goes beyond the product development workflow, it is a principle applicable to the whole organization.

This talk will present a concrete insight into the software development workflow that we are using today, before discussing what you
need to consider if you want to set up an equally effective feedback-driven product development workflow in your organization. The talk
is relevant for everyone involved product development where software is a key component.

a 60 minute session for Kongsberg Maritime Subsea (Simrad), Horten
November 24, 2016, Olve Maudal

how we do it at Lysaker and how you can design your own system

Cisco Systems, Innovation Center
Lysaker, Norway

Telepresence

Some of the stuff we develop at Lysaker

at Lysaker we are ~350 engineers

most of us work with software developement

but we also do...

Electronics / Hardware

Mechanics

1992 2015

Industrial Design and User Experience Design

Looking into

the future

• embedded software development
• about 200 software developers
• typically more than 100 commits per day
• 4-5 million lines of code, mostly C and C++
• visible traces back to the late 1980’s
• ~20 products, ~50 builds

The main codebase at Lysaker

“... an organization that develops spectacular products and
outperforms all competitors”

At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)

The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

Facts about advanced product development

Few high tech projects are like running
down on a paved road where you can see the ...

... goal in the end of the road.

Most projects are more like...

extreme orienteering

in impossible terrain

with a group of people

in the dark

with only a sketchy map as guidance

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

An example of a
continuous integration
and deployment system

Continuous integration
and deployment

system

emulator

target

unit tests

Continuous integration
and deployment

system

emulator

target

unit tests

continuous
integration

QA status

Continuous integration
and deployment

system

emulator

target

unit tests

continuous
integration

QA status

code base

Continuous integration
and deployment

system

emulator

target

unit tests

continuous
integration

QA status

code base

Continuous integration
and deployment

system

emulator

target

unit tests

continuous
integration

QA status

unit tests

code base

Continuous integration
and deployment

system

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests

code base

Continuous integration
and deployment

system

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests

code base

builds

Continuous integration
and deployment

system

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests deployment
engine

system tests

code base

builds

Continuous integration
and deployment

system

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests deployment
engine

system tests

code base

builds

Continuous integration
and deployment

system

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests deployment
engine

system tests

code base

builds

Continuous integration
and deployment

system

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests deployment
engine

system tests

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests

code coverage

deployment
engine

system tests

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests

code coverage

deployment
engine

system testsstatic code
analysis

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous
integration

QA status

unit tests module tests

code coverage

deployment
engine

system testsstatic code
analysis

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution

static code
analysis

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

module tests

continuous
integration

QA status

unit tests module tests

code coverage

deployment
engine

system testsstatic code
analysis

code base

builds

dynamic code analysis

Continuous integration
and deployment

system

scenario testing software
distribution

static code
analysis

emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

module tests

continuous
integration

QA status

unit tests module tests

code coverage

deployment
engine

system testsstatic code
analysis

code base

builds

dynamic code analysis

Continuous integration
and deployment

system

scenario testing software
distribution

static code
analysis

We want something like that! Where do we start?

• Create a robust build system
• Integrate continuously
• Grow professionalism

• Embedded? Create your own build system!
• Check in build system with your code
• Aim for a clean build, eg get rid of warnings (-Werror)
• Superfast, incremental and partial builds
• Heterogeneous development environment (avoid the VS6 effect)
• Invest in writing good emulators
• Make sure unit tests can run on dev machine, emulator and target
• Integrate your test systems into your build system (--test-all)

Create a robust build system

• Manual integration vs Automatic integration
• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success
• Test everything, for all commits
• Superfast feedback
• Invest in equipment for fast and complete system testing
• Prune unused metrics and feedback mechanisms
• Slim down your QA department

Integrate continuously

• make sure you have enough slack in the system
• avoid staged or gated commits, some broken builds are acceptable
• focus on the flow of changes
• make everything visible and advocate collective ownership
• encourage code reviews, but avoid mandatory formal code reviews
• beware of the observer effect
• optimize for your top 80% developers

Grow professionalism

!

Make sure that everybody is working towards a
common goal.

Control does not always work

Focus on flow

(Taylorism)

(Demingism)

Reductionism vs Systems thinking

Systems thinking is the process of
understanding how things influence one
another within a whole

Reductionism is a philosophical position that a
complex system is nothing but the sum of its
parts, and that an account of it can be reduced
to accounts of individual constituents.

(aka, Taylorism vs Demingism)

Frederick Winslow Taylor (1856-1915) W. Edwards Deming (1900-1993)

Learn to surf, instead of trying to control the waves...

The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.

(Princess Leia)

