
Product Development in TANDBERG
olve.maudal@tandberg.com

TANDBERG has never cared much about documentation, procedures, methodologies
and risk reduction. However, we do care very much about our culture and our principles.
This has enabled us to outperform all our competitors in the video conferencing and
telepresence market during the last decade.

In retrospect, we realize that TANDBERG has for 10-15 years built a culture that is quite
compatible with Agile and Lean ideas.

In this talk I will start by giving a glimpse into TANDBERG R&D at Lysaker. Then I will
present the company and our products. After the break I will give an example of how we
developed a particular product with emphasis on software development, before I dive
into the principles that we follow.

A presentation for Oslo Lean Meetup
February 9, 2010

Disclaimer: This is an extremely subjective view of how we do product development in TANDBERG. Please do not assume that
it is possible to generalize well over the examples given.

About Olve

geek - very proud of being a computer programmer.

Been programming nearly every day since I bought my first
computer - the Commodore VIC-20.

Studying Software Engineering (BEng in Manchester 1992-1995), Artificial Intelligence (MSc in
Edinburgh 1995-1996) and did some postgrad studies in Knowledge Discovery (NTNU
1996). Professionally I started developing systems for finding oil (Schlumberger 1996-2000),
then I developed systems for moving money (BBS 2000-2004), and now I am developing
systems for effective communication between people (TANDBERG since 2004).

Active member of the vibrant geek community in Oslo. Eg, JavaPils, Smidig, JavaZone, XP
Meetup, Cantara, Lean Meetup, Rubberducks and Oslo C++ Users Group, and a lot of other
things. Also an active member of ACCU.

Blogs regularly on http://olvemaudal.wordpress.com/ and Twitter @olvemaudal

http://olvemaudal.wordpress.com
http://olvemaudal.wordpress.com

As a software engineer joining TANDBERG...

at first you might get this impression...

• No documentation

at first you might get this impression...

• No documentation
• No routines

at first you might get this impression...

• No documentation
• No routines
• Fooling around

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

at first you might get this impression...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period
• Spectacular products

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period
• Spectacular products
• Fast deliveries

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

but then you start to notice...

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period
• Spectacular products
• Fast deliveries
• Sustainable pace

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period
• Spectacular products
• Fast deliveries
• Sustainable pace

... and while you still see the "negative" stuff, you will
start to appreciate the "positive" stuff more.

• No documentation
• No routines
• Fooling around
• Not following plans
• Decision are postponed
• Nobody decides
• Little respect for management
• Little modularization
• Lack of precision
• Sloppiness
• People are not working hard

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period
• Spectacular products
• Fast deliveries
• Sustainable pace

... and while you still see the "negative" stuff, you will
start to appreciate the "positive" stuff more.

Some thoughts about negative and positive components

everything has a negative component ...

... as well as a positive component

so if you want to improve something...

... do not try to fix the negative stuff ...

... before understanding how it will affect the positive
component

?

?

?

?

?

because you might end up by reducing the positive
component by even more

while some organizations might have a profile like this

while some organizations might have a profile like this

the TANDBERG profile looks more like this

The TANDBERG culture has been extremely
focused on improving things that we are already
quite good at, and spend less time on worrying
about things that "should" have been improved.

Managing your problems can only
make you good, whereas building
your opportunities is the only way
to become great. (Collins, 2001)

and it explains why we are winning over and over again, even if
it (to some) looks like the we are doing everything wrong.

Indeed, this is the signature of a GREAT organization

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period
• Spectacular products
• Fast deliveries
• Sustainable pace

Observations from TANDBERG

THE
TANDBERG
WAY

SPEED AND PRECISION
Simplify - focus - act * Approximately right
rather than accurately wrong * Think * Do it
right the first time

INTEGRITY AND ENTHUSIASM
Sense of humour * Honesty * High ethical
standards * Excitement * Trustworthiness *
Loyalty

EXCEED EXPECTATIONS
Personal initiative * Fighting spirit * Go the last
mile

FUN AND PROFIT
Maximize long term shareholder value * Pass
på penga * One for all, all for one * Energy

TANDBERG FIRST
First in user benefits * Innovative * “Kreativ
galskap” * Understanding customer needs

About TANDBERG

TANDBERG is the leading provider of telepresence,
high-definition video conferencing and mobile
video products and services. TANDBERG designs,
develops and markets systems and software for
video, voice and data. The company provides sales, support and value-added
services in more than 90 countries worldwide.

TANDBERG shipped it's first product, a picture telephone for ISDN, in 1989.
Since then TANDBERG has grown from a small startup based in Norway into an
international company with ~1600 employees and a revenue of 800 MUSD in
2008. ~450 engineers works with product with research and development.

Dual headquarters in New York and Oslo. R&D centres at Lysaker (NO), Langley
(UK), Ruscombe (UK), Bangalore (IN) and Hamilton (NZ).

www.tandberg.com

Breaking news (Dec 4, 2009): After a successful $3.4bn bid Cisco now controls
more than 90% of shares in TANDBERG. The transaction is expected to close
some time during 2010.

http://www.tandberg.com
http://www.tandberg.com

0

125

250

375

500

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Number of employees in TANDBERG R&D

(the numbers are not exact)

TANDBERG
www.tandberg.com

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

Tandberg Data

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

Tandberg Data
Tandberg Storage

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

Tandberg Data
Tandberg Storage

TANDBERG Television

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

Tandberg Data
Tandberg Storage

TANDBERG Television
TANDBERG Display

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

Tandberg Data
Tandberg Storage

TANDBERG Television
TANDBERG Display
Tandberg Eiendom

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

Tandberg Data
Tandberg Storage

TANDBERG Television
TANDBERG Display
Tandberg Eiendom

Robert Tandberg Møbler

http://www.tandberg.com
http://www.tandberg.com

TANDBERG
www.tandberg.com

Tandberg Data
Tandberg Storage

TANDBERG Television
TANDBERG Display
Tandberg Eiendom

Robert Tandberg Møbler
Tandberg's Bildeler, Larvik

http://www.tandberg.com
http://www.tandberg.com

Video: The new way of working (2:00)

http://www.tandberg.com/media/index.jsp?id=1373

We develop and sell...

Meeting room systems

Telepresence systems

Personal systems

PC based solutions

Networking products

And a lot of other stuff

~1600 employees worldwide

~450 R&D engineers

~250 write code every day

 C, C++, Python, Java, C#, VHDL, Ruby, Scala

most of us work with software developement

but we also do...

Electronics / Hardware

Mechanics

1992 2007

Industrial Design

Looking into

the future

TANDBERG Codec C90 - “The Saturn Project”

How did we do it?

A case study:

Disclaimer:

The following description does not show how projects in
Tandberg are typically developed, it is just an example of how a
particular project actually did it. We think about every project,
product and team as something unique, thus it does not make
sense to create a particular procedure to follow.

Indeed, when it comes to product development, TANDBERG is
“allergic” to corporate procedures. It is “unthinkable” that anyone
outside a project or a team should impose a certain way of doing
things, so we can not say “This is the way we do it”, but you may
look at a particular project and say “This is the way we did it”.

C90 video (1:19)

http://www.tandberg.com/media/index.jsp?id=1312

http://www.tandberg.com/media/index.jsp?id=1312
http://www.tandberg.com/media/index.jsp?id=1312

C90 Features:
- realtime H.264 encoding/decoding
- full HD 1080p30, (4+4) concurrent streams
- 12 high definition video sources
- 8 high quality audio sources
- support for many-to-many communication
- Interoperability through H323 and SIP
- API for integration and remote control

Camera Display

Display

Remote Control Microphone
SpeakerMicrophone

Camera
Document Camera

PC

Network

•analog amplification
•high quality AD and DA converters
•pure electronics, no processor/SW
•717 components
•6 layers

C90 AUDIO EXTENSION BOARD

• 10 Da Vinci DM6467 for video compression/
decompresion(1 ARM, 1 dsp, 2 coprocessors),

• 5 Altera Cyclone III 120 for video scaling &
composing(Nios II softcore 50 MHz)

• 15 Gbps video backplane
• 3.8 GByte DDR2 RAM
• 128 mbit x5 SDRAM
• 6097 components
• 30520 pins
• 22 layers
• 6490 nets

C90 VIDEO BOARD

• 1 Altera Cyclone III 120 for Audio switching
(Nios II softcore 50 MHz)

• 9 TI 6727, audio dsp for echo control,
compression, decompression, +++

• PowerPC 8347, main processor, application
software, networking, user interface

• 3543 components / 15659 pins
• 16 layers
• 3264 nets

C90 MAIN BOARD

• 10000+ components
• 44 (6+22+16) layers
• 56 processor cores
• several million lines of code (C and C++)

C90 - from a geek point of view

• Developed at Lysaker
• Started spring 2007
• First HW prototype arrived summer 2008
• Released late 2008 (~20 months of development)
• 2-3 people working with mechanics/design
• 4-5 people working with electronics/hardware
• 5-6 people working with FPGA development
• 40-50 people working with software development
• 4 people working with test developers
• 1 person working with approvals

TANDBERG Codec C90

• Continuous planning
• Always attack high risks first
• Heavy focus on effective feedback mechanisms
• Visualization of actual status throughout project
• Parallel development
• Iterations and time-boxing
• Daily scrum of scrums
• Weekly rendezvous meetings
• Early and many prototypes

Development Practices in the Saturn project

emulatorsemulators

module tests

target

unit tests

emulator

 developer

dynamic code analysis
(valgrind)

continuous integration
(matchbox)

code coverage
(gcov)

unit tests

module tests

deployment engine
(ITVM)

emulators emulatorsemulatorstargets

system tests
(TNG)

codebase
(svn)

static code analysis
(Coverity)

project status report

Typical workflow in the Saturn project -
seen from a developers’ point of view

 developer

Software development in the Saturn project as
seen from a developers point of view.

emulator

 developer

Software development started long before we had any
hardware to play with. We spent a lot of energy to
develop an emulating environment for this project.

target

emulator

 developer

The emulator was/is nearly complete. Apart from some CPU
intensive and HW specific parts of the application, most of
the code can run quite smoothly in an emulator running on
the developers machine.

Even when hardware became available developers still use the
emulator all the time because of convenience (speed of
deployment, proper debuggers and other development tools).

target

unit tests

emulator

 developer

We do not enforce unit testing or TDD, but a lot of
developers find it to be a productive practice so most
of our modules have unit tests that can be executed
during development. Currently the Saturn code has
something like 20000+ unit tests.

target

unit tests

emulator

 developer

A very nice feature of our unit test framework
is that it can also be executed on target and (of
course) in the emulator. Actually, the unit tests
can be part of the release build so they can be
executed from an administrative console even
when the unit is in the field.

module tests

target

unit tests

emulator

 developer

dynamic code analysis
(valgrind)

We also have a module test framework. The module tests
are also used to execute dynamic code analysis (valgrind).

 developer

continuous integration
(matchbox)

project status report

Before checking in changes, the developer
checks the continuous integration server and
the current project status report before
checking into the source control system.

 developer

continuous integration
(matchbox)

codebase
(svn)

project status report

Any change applied to the shared codebase is immediately picked up by
matchbox, our continuous integration system. Matchbox builds all
products depending on that change, perhaps as many as ten products
using different compilers targeting various processors.

All compilation is with high warning levels (-Wall, -Wextra) and
warnings are treated as errors (-Werror)

 developer

continuous integration
(matchbox)

code coverage
(gcov)

unit tests

module tests

codebase
(svn)

project status report

Matchbox will also run all
unit tests, measure code
coverage and run module
tests for all products
affected by the change.

We have many powerful
build servers. Developer
typically gets feedback from
matchbox within a few
minutes.

emulatorsemulators
 developer

continuous integration
(matchbox)

code coverage
(gcov)

unit tests

module tests

deployment engine
(ITVM)

emulators emulatorsemulatorstargets

system tests
(TNG)

codebase
(svn)

project status report

If matchbox is happy, then ITVM
take the built images and deploy
them onto a farm of emulators
and/or targets so that TNG can
start running loads of scripted
test scenarios both testing one
particular target or a group of
targets communicating with each
other.

Some of the tests runs fairly
quickly other takes hours to run.

emulatorsemulators
 developer

continuous integration
(matchbox)

code coverage
(gcov)

unit tests

module tests

deployment engine
(ITVM)

emulators emulatorsemulatorstargets

system tests
(TNG)

codebase
(svn)

project status report

As soon as the results from
various system tests are
ready, the project status
report gets updated.

Typically, the developer will
see the results from all the
system tests within an hour
or two.

emulatorsemulators
 developer

continuous integration
(matchbox)

code coverage
(gcov)

unit tests

module tests

deployment engine
(ITVM)

emulators emulatorsemulatorstargets

system tests
(TNG)

codebase
(svn)

static code analysis
(Coverity)

project status report

Coverity is also working on
the codebase. It takes about
12 hours to execute, so the
project status report is
updated about two times a
day with the result of the
static code analysis.

emulatorsemulators

module tests

target

unit tests

emulator

 developer

dynamic code analysis
(valgrind)

continuous integration
(matchbox)

code coverage
(gcov)

unit tests

module tests

deployment engine
(ITVM)

emulators emulatorsemulatorstargets

system tests
(TNG)

codebase
(svn)

static code analysis
(Coverity)

project status report

And, of course, it is possible for the
developer to use the ITVM/TNG
system without going through
subversion and matchbox. This is
very useful, especially when doing
complex changes.

emulatorsemulators

module tests

target

unit tests

emulator

 developer

dynamic code analysis
(valgrind)

continuous integration
(matchbox)

code coverage
(gcov)

unit tests

module tests

deployment engine
(ITVM)

emulators emulatorsemulatorstargets

system tests
(TNG)

codebase
(svn)

static code analysis
(Coverity)

project status report

This workflow represents the
feedback mechanism that developers
rely on when applying changes to the
codebase. Bad changes are reported
back within minutes and hours - not
days and weeks.

Other aspects of the Saturn project:

• IRC channels
• free choice of development platform
• software repository (svn)
• warning free compilation!
• proper training (C++, C, Testing, Professionalism, ...)
• lot of energy spent on software emulator of actual hardware
• project leader is also the configuration manager / build master
• Teams: GUI, App, Protocol, Video, Audio, FPGA, Platform, QA, Support
• static code analysis (Coverity)
• dynamic code analysis (valgrind)
• build system (genmake2, inhouse python)
• automatic deployment engine (ITVM, inhouse C#)
• automatic system testing (TNG, inhouse python)
• unit test framework (unittest, inhouse C and C++)
• module test framework (inhouse C++)
• code coverage (gcov)
• continuous integration system (matchbox, inhouse python)

Software development is a continuous learning process and a
cooperative game of communication between professionals.
Software development is about repeating cycles of preparing,
changing, observing, reflecting, and learning.

Software development is a continuous learning process and a
cooperative game of communication between professionals.
Software development is about repeating cycles of preparing,
changing, observing, reflecting, and learning.

Software development is a continuous learning process and a
cooperative game of communication between professionals.
Software development is about repeating cycles of preparing,
changing, observing, reflecting, and learning.

Software development is a continuous learning process and a
cooperative game of communication between professionals.
Software development is about repeating cycles of preparing,
changing, observing, reflecting, and learning.

Software development is a continuous learning process and a
cooperative game of communication between professionals.
Software development is about repeating cycles of preparing,
changing, observing, reflecting, and learning.

Software development is a continuous learning process and a
cooperative game of communication between professionals.
Software development is about repeating cycles of preparing,
changing, observing, reflecting, and learning.

Software development is a continuous learning process and a
cooperative game of communication between professionals.
Software development is about repeating cycles of preparing,
changing, observing, reflecting, and learning.

So... for this project...

When we saw an opportunity to improve feedback mechanisms
within the project we did. When we found things that reduced
communication within the project we tried to get rid of it.

Especially in crunch mode, we focused on making sure that the
feedback mechanisms was working. Automated feedback is
about giving developers confidence when making changes -
when confidence is lost, everything is lost...

A professional is defined by the way they act
under pressure. Do you rush? Do you drop
your disciplines? Or do you stay calm under
fire? (Uncle Bob, 2009)

Product Development in TANDBERG

• No corporate standards or procedures

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization
• We hire and keep exceptional people

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization
• We hire and keep exceptional people
• Communication is a key skill for all our engineers

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization
• We hire and keep exceptional people
• Communication is a key skill for all our engineers
• We are fast and “sloppy”

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization
• We hire and keep exceptional people
• Communication is a key skill for all our engineers
• We are fast and “sloppy”
• We release early and we release often

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization
• We hire and keep exceptional people
• Communication is a key skill for all our engineers
• We are fast and “sloppy”
• We release early and we release often
• Fun gives profit (not: profit, then fun)

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization
• We hire and keep exceptional people
• Communication is a key skill for all our engineers
• We are fast and “sloppy”
• We release early and we release often
• Fun gives profit (not: profit, then fun)
• The company builds on trust

Product Development in TANDBERG

• No corporate standards or procedures
• Little documentation gives effective communication
• Treat engineers as professionals, not as resources
• Slack is embedded, and “skunk work” projects appreciated
• Spend very little energy on things that are not essential
• "Plans are nothing, planning is everything"
• Do not write hours, do not measure project cost
• Delay decisions as much as possible
• To fail is OK, therefore we deliver spectacular stuff
• Doers are very much respected in Tandberg
• Autonomous organization
• We hire and keep exceptional people
• Communication is a key skill for all our engineers
• We are fast and “sloppy”
• We release early and we release often
• Fun gives profit (not: profit, then fun)
• The company builds on trust

Product Development in TANDBERG

 We follow principles, not processes!

SPEED AND PRECISION
Simplify - focus - act * Approximately right
rather than accurately wrong * Think * Do it
right the first time

INTEGRITY AND ENTHUSIASM
Sense of humour * Honesty * High ethical
standards * Excitement * Trustworthiness *
Loyalty

EXCEED EXPECTATIONS
Personal initiative * Fighting spirit * Go the last
mile

FUN AND PROFIT
Maximize long term shareholder value * Pass
på penga * One for all, all for one * Energy

TANDBERG FIRST
First in user benefits * Innovative * “Kreativ
galskap” * Understanding customer needs

SPEED AND PRECISION
Simplify - focus - act * Approximately right
rather than accurately wrong * Think * Do it
right the first time

INTEGRITY AND ENTHUSIASM
Sense of humour * Honesty * High ethical
standards * Excitement * Trustworthiness *
Loyalty

EXCEED EXPECTATIONS
Personal initiative * Fighting spirit * Go the last
mile

FUN AND PROFIT
Maximize long term shareholder value * Pass
på penga * One for all, all for one * Energy

TANDBERG FIRST
First in user benefits * Innovative * “Kreativ
galskap” * Understanding customer needs

• People communicate
• Focus on important stuff
• Embedded slack
• Continuous planning
• Effective decisions
• Autonomous organisation
• Respect for the doers
• No integration period
• Spectacular products
• Fast deliveries
• Sustainable pace

The 7 Lean Software Development Principles

• Eliminate Waste
• Create Knowledge
• Build Quality In
• Defer Commitment
• Deliver Fast
• Respect People
• Improve the System

(Poppendieck)

Eliminate Waste
• Provide market and technical leadership - your company can be successful by producing innovative and technologically advanced products but you must

understand what your customers value and you know what technology you're using can deliver
• Create nothing but value - you have to be careful with all the processes you follow i.e. be sure that all of them are required and they are focused on

creating value
• Write less code - the more code you have the more tests you need thus it requires more work and if you're writing tests for features that are not

needed you are simply wasting time
Create Knowledge
• Create design-build teams - leader of the development team has to listen to his/her members and ask smart questions encouraging them to look for

the answers and to get back with encountered problems or invented solutions as soon as possible
• Maintain a culture of constant improvement - create environment in which people will be constantly improving what they are working on - they should

know that they are not and should not be perfect - they always have a field to improve and they should do it
• Teach problem-solving methods - development team should behave like small research institute, they should establish hypotheses and conduct many

rapid experiments in order to verify them
Build Quality In
• Synchronize - in order to achieve high quality in your software you should start worrying about it before you write single line of working code - don't

wait with synchronization because it will hurt
• Automate - automate testing, building, installations, anything that is routine, but do it smartly, do it in a way people can improve the process and change

anything they want without worrying that after the change is done the software will stop working
• Refactor - eliminate code duplication to ZERO - every time it shows up refactor the code, the tests, and the documentation to minimize the

complexity
Defer Commitment
• Schedule Irreversible Decisions at the Last Responsible Moment - you should know where you want to go but you don't know the road very well, you

will be discovering it day after day - the most important thing is to keep the right direction
• Break Dependencies - components should be coupled as loosely as possible to enable implementation in any order
• Maintain Options - develop multiple solutions for all critical decisions and see which one works best
Optimize the Whole
• Focus on the Entire Value Stream - focus on winning the whole race which is the software - don't optimize local inefficiencies, see the whole and

optimize the whole organization
• Deliver a Complete Product - teams need to have great leaders as well as great engineers, sales, marketing specialists, secretaries, etc. - they together

can deliver great final products to their customers
Deliver Fast
• Work in small batches - reduce projects size, shorten release cycles, stabilize work environment (listen to what your velocity tells you), repeat what's

good and eradicate practices that creates obstacles
• Limit work to capacity - limit tasks queue to minimum (one or two iterations ahead is enough), don't be afraid of removing items from the queue -

reject any work until you have an empty slot in your queue
• Focus on cycle time, not utilization - put in your queue small tasks that cannot clog the process for a long time - reduce cycle time and have fewer

things to process in your queue
Respect People
• Train team leaders/supervisors - give team leaders the training, the guidance and some free space to implement lean thinking in their environment
• Move responsibility and decision making to the lowest possible level - let your people think and decide on their own - they know better how to

implement difficult algorithms and apply state-of-the-art software frameworks
• Foster pride in workmanship - encourage passionate involvement of your team members to what and how they do

Seven Principles of Lean Software Development

http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-eliminate-waste
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-eliminate-waste
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-create-knowledge
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-create-knowledge
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-build-quality
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-build-quality
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-defer-commitment
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-defer-commitment
http://agilesoftwaredevelopment.com/blog/pbielicki/optimize-the-whole
http://agilesoftwaredevelopment.com/blog/pbielicki/optimize-the-whole
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-deliver-fast
http://agilesoftwaredevelopment.com/blog/pbielicki/seven-principles-lean-software-development-deliver-fast
http://agilesoftwaredevelopment.com/blog/pbielicki/respect-people
http://agilesoftwaredevelopment.com/blog/pbielicki/respect-people

Principles behind the Agile Manifesto

We follow these principles:

• Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

• Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the
project.

• Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.
• Continuous attention to technical excellence and good design enhances agility.
• Simplicity--the art of maximizing the amount of work not done--is essential.
• The best architectures, requirements, and designs emerge from self-organizing

teams.
• At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

!

Appendix

It takes a lot to stay ahead in the game...

Inhouse training

C Foundation course
C++ Foundation course
C++ Advanced course
UML Course
Pattern-Based Software Development Course
Studygroups in OOAD
Studygroups in Java
Studygroups in C++
Agile Planning, Estimation and Retrospectives
Certified ScrumMaster
Agile Modeling Design Workshop
Software Architecture
Pattern Language of Tandberg
Python course
Scala course
... and much more

Hackers’ Corner - Internal seminars

Inhouse conferences

TechZone Lillehammer 2007
~ 190 engineers, 32 talks, 4 tracks

TechZone Lysaker 2007
~ 260 engineers, 40 talks, 5 tracks

TechZone Barcelona 2008
~ 380 engineers, 43 talks, 5 tracks

TechZone Storefjell 2010
~ 500 engineers, 45 talks, 5 tracks, TechFair

Engage industry experts...

Dana Bredemeyer - Software Architecture

Kevlin Henney
C++, C, UML, Pattern-Based Software Development, Pattern Language of Tandberg

Michael Feathers
Pair-Programming, Testing, Professionalism

Jon Jagger - C, C++, UML, Patterns, Agile, TDD

Jutta Eckstein
Project Management, Agile Planning, Retrospectives

Robert C. Martin “Uncle Bob”
TDD, Pair Programming, Professionalism, Agile Design Course (SOLID)

Tom and Mary Poppendieck
Project Management, Lean Software Development

Craig Larman
Agile Modeling Design Workshop

David Beazley - Python training

Geir Amsjø - Certified ScrumMaster Course

Bruce Perens - Free and Open Source issues

Jonas Boner - Scala training

Bjarne Stroustrup - About past and future of C++

RMS

“I have been working with software development
groups all around the world, and you are way
ahead of most.”

(a consultant visiting our R&D department)

